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Criticality in a model with absorbing states
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We study a one-dimensional model that undergoes a transition between an active and an absorbing phase.
Monte Carlo simulations supported by some additional arguments prompted us to predict the exact location of
the critical point and critical exponents in this model. The exponént§.5 andz=2 follows from random-
walk-type arguments. The exponefts- v, are found to be nonuniversal and encoded in the singular part of
reactivation probability, as recently discussed by H. Hinrichggmd-mat/0008179 A related model with
guenched randomness is also studied.
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[. INTRODUCTION this model. In the final part of our paper we examine yet
another but closely related modg&lingle-chain modelfor

Recently, nonequilibrium phase transitions have been inwhich we can obtain also the lower bound of the absorbing
tensively studied in a variety of models. Some attempts wer@hase. It turns out that both bounds are the same which ex-
also made to classify possible types of phase transitions int@ctly locates the transition point in this model. The model
universality classes similarly to equilibrium transitiqds2]. ~ studied in this part of our paper contains some quenched
However, nonequilibrium transitions are much richer andrandom variables and its critical behavior is similar to that of
more puzzling than equilibrium ones and their understandinghe model studied in the main part of our paper.
is still far from complete.

A class of nonequlibrium models for which such a catego-
rization seems most feasible are models with absorbing
stateq 3]. For example, models with unique absorbing states A. Definition and basic properties
are expected to belong to the so-called directed-percolation Our model is a certain variant of models recently studied
(DP) universality[4]. Moreover, models with doublesym- . . - y
metric absorbing states or with some conservation law inn Some other context$9,12. It is defined on a one-

their dynamics belong to another universality class, the So(_jlmensmnal ladderlike latticgsee Fig. 12)]. For each bond

called parity-conserving PO universality class[5]. Al- between the nearest-neighboring sites we introduce a bond

though the above classification is best confirmed for oneya”ablewe(_0'.5’0'5).' Intro_ducmg real para;tmetarand
>0, we call a given site active whemw,|ws|5<r, where

dimensional models, it seems to apply to higher-dimensional . , . . .
models as wel[6]. Moreover modpel?sywith ?nore than two W1 andw, are intrachain bond variables connected with this

[7] or even infinitely many absorbing states also fall into thes'ite andws is the interchain bond variablsee Fig. 13)].

above universality classe@ypically, models with infinitely Sthervxgse, this S|tet_|s| %a”ed r}onactgle.r;l' he thodelt]s dr!}[/er)
many absorbing states fall into DP universality class, how- y random sequential dynamics and when the active site 1s

ever, certain symmetrief8,9] or conservation lawg10] sel_e<r:1t§d,_ web as§|gn _aglew, I\\/thh “tr_"fo”?: probab|l|;[y, :jhrte%
might change the criticality into PT. neighboring bond variables. Nonactive sites are not updated.

In the present paper we study certain one-dimensional First, let us notice that the mode] has a certain global
models with infinitely many absorbing states. In the first partUp'down symmetry. Namely, reversing all bond variables

we study a model defined on a ladderlike lattidadder W——W we _do not ch_ange the status_ of any site, i.e., active
mode) and our Monte Carlo simulations show that this (nonactive sites remains activenonactivg. The same sym-

model belongs to neither DP nor PC universality classes.

Il. LADDER MODEL

Critical exponents andz of this model appear to be rational l"l 22

numbers(contrary to the DP or PC criticalifyand can be ~ ~

obtained using simple random-walk-type arguments. How- W, (a)
ever, the exponeni8 andv, (= 8) appears to be nonuniver-

sal. It turns out that their values are encoded in the singular
part of the reactivation probability as was recently postulated
in the context of related models by Hinrichsfgid].
Using a certain property of our ladder model, we can W ovVW (b)
easily calculate the upper bound on the existence of the ab- o5
sorbing phase. Numerical simulations show that this bound G, 1. (aThe ladder model. The site®) is active when
most likely gives the exact location of the critical point in w,w,|w,|S<r. An update of an active site replaces all three neigh-
boring bonds Q) with uniformly distributed random numbers from
the interval(—0.5,0.5. (b) The single-chain model. The site is ac-
*Email address: lipowski@main.amu.edu.pl tive whenw;w,v <r and its update replaces only; andw..
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metry appears in a closely related model, which is defined or 0 T . T T . I

a single chain and where activity of a site is determined by

the product of two intrachain variabl¢8] (in the following -lr b
we refer to this model as model) Alt was suggested that this s=4

symmetry is responsible for the fact that the model A be- 2r i

longs to the PC universality clag®]. If so, the present logi(p) . single-chain

model should also belong to this universality class. In the 3r 7
present paper we show, however, that the critical behavior of

this model is different. In our opinion, this result does not 4r 7
completely abolish the claims about the importance of the

up-down symmetry. Namely, as we will show below, the S o " _4 " -
change of the universality class in the present model come! log1o(r)

from the very intricate mechanism: upon approaching the

critical point the system might be regarded as composed of FIG. 2. The log-log plot of the density of active sitpsas a
two weakly interacting critical subsystems. We expect that ifunction of r. The linear sizeL in this simulation varied fronL
a generic case such a mechanism is absent and models of ti§x 10" to 2x10P. The solid lines(least-squares fithave slopes
kind, which are endowed with the up-down symmetry,corresponding tg=0.26(1) (for s=4), 0.5X1) (for s=2), 1.32)
should belong to the PC universality class. (for s=0.5), and 0.9@) for the single-chain model.

This situation bears some similarity to the equilibrium _ - . .
statistical mechanics, where one expects that short-range itW, show that =0 is actually a critical point of this model
teracting Ising models will generically belong to the Onsager@nd is accompanied by typical power-law characteristics.
universality class. It is known, however, that when certain  The first evidence of such a characteristic is shown in Fig.
additional interactions are included, the critical behavior of2, Which presents the logarithmic plot pfas a function of.
an Ising model, which is then equivalent to the eight-vertexThe linearity of the plot for approximately three decades

model, deviates from the generic c444]. confirms the power-law behavipr~r#. At the same time, it
confirms the location of the critical point.=0. From the
B. Monte Carlo simulations least-squares analysis of these data we estiffat6.51(1).

) ) Another quantity that we measured was the time evolution
To examine the properties of the above model we usegy the densityp for r close to the critical point =r. One
standard Monte Carlo simulations. First, let us describe régxpects that at criticalitp~t~° and deviations from the

sults fors=2. We calculated the steady-state density of aCpower-law behavior appear off the critical point. The results
tive sitesp. The fact that the model is defined on a one-gre presented in Fig. 3. For=0 the clear power-law behav-
dimensional lattice enabled us to examine systems of larggy js observed and from the slope of the data we estimate
size L (up to 5x10°). Also the simulation timetyc was 5=0.50(1).

rather large and typicallfyc~ 10°—10° (the unit of time is Other power-law characteristics are obtained from the
defined as a single, on average, update per lattice Mer  finjte-size analysis. In Fig. 4 we present the size dependence
simulations show that for>0 the densityp remains posi- of the characteristic timer defined as an average time
tive but as soon as becomes negative the system quickly needed for the system to reach an absorbing steith a

reaches one of the absorbing states and te6. A simple  random initial configuration Again, the best linearity is
argument, similar to the one used for related mod6ls

shows that forr<O the model gradually generates sites, 0 : : , . : , . , .
which remain permanently nonactive. Indeed rlet0 and a
certain interchain bond/; satisfies the condition 1
lws| <\=r/(0.5), 1) )
logio[p(t)]
then for each site connected g the absolute value of the -4

product W1W2W§ is smaller than —r, which implies
w,W,wa>r, and these sites remain permanently nonactive.

Since upon updating an active site there is a finite probability %
to satisfy(1), there is a finite rate of creation of such sitas o102 25 3 35 4 455 556
similar argument can be applied to an intrachain Hond logo({)

Thus, in agreement with numerical simulations, fet0, the FIG. 3. The time evolution of the densify for (from top to
system is in the absorbing phase. Combined with the comysgttom) r=104,1075,0-107°,—10°8,—10°%, and— 10" %. The
putationally observed property that for~0 the densityp  simulations were made f&=2 andL=10° and we checked that
remains positive, it implies that=r,=0 is the transition for the examined time scale our data are basically size independent.
point for that model, which separates active and absorbin@hese data limir, to the range— 10" °<r <10 ®. Even tighter
phases. In addition, our simulations, which are described besounds follow from Fig. 4.
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9 - r x . . condition appears in model A and thus the present model at
the criticality is equivalent to two noninteracting models A.
Numerical evidence was already presenf@fithat atr =0
model A is at the end point of its critical phase, which in the
A model appears in the range<0 <r.~0.027. This critical
phase is described by simple, random-walk related expo-
nents:5=0.5z=2, andB/v, =1 [16]. On the basis of the
above relation and in agreement with our simulations we
obtain that these random-walk exponents are the critical ex-
ponents in our model. Let us emphasize that the critical
1 ' . ' . . § phase in PC models exists in a certain range of a control
parametef17] and its(random-walk criticality is described
by a different set of exponents than the critical point of such

FIG. 4. The size dependence of the characteristic timler ~ models. In our model, there is only an isolated critical point,
(from top to botton) r=10°,10"8,0~10"12 108 —10°% and  which is described by the random-walk exponents.
—10"*. The straight line has a slope correspondingzte2.01. The above relation with model A does not explain the
Each point is an average of 100 independent runssang. value of the exponeng, which most likely equals 0.5. This

is because the relation with model A holds onlyrat0

seen forr=0 and in this case we obtain~LZ with z  While the exponenp describes the off-critical singularity.
=2.01(1). Let usnotice that this figure limits the allowed One can argue, however, that whets positive but small,
values ofr to the very narrow range 10~ 2<r <10"%. then the interaction between these two A models is also

Finally, Fig. 5 presents the steady-state dengitps a small. Let us recall now, that for suech model A is critical
function O'f sizeL. Forr=10"%and 10°%, p converges to the and thus the present model is equivalent to two weakly in-
positive value but for =0 it decays a§~L*5’VL with the  teracting critical A models. It is interesting to observe that

exponentd/ v, =0.991). such an interaction is sufficient to destroy the criticality and

For comparison with our model, we quote the values ofl® Keep the system in the active phase with0. Qualita-
these exponents for the one-dimensional (B®f. [14]) and  tVely, we explain the largécomparing to model Aactivity
PC (Ref. [15]) universality classes:3=0.264 86DP) as follows: In models with absorbing states a nonactive do-

0.92P0); 6=0.159 464DP), 0.286PC); z=1.580 74%¥DP), main can be reactivatgd only throu.gh its poundaries. H.ow-
1.74PC) and v, =1.096 854DP), 1.83PC). Thus, our re- ever, the glrea_dy mentioned Weak mter_actlon can _reactl\_/ate
sults clearly place the model into a new universality class, €Ven the interior of such domains, which dramatically in-
However, the obtained values of the exponents are ndt'€aSes the activity of the system.
entirely unexpected. In the following we argue that at least
the values of5,z, and of the ratig3/v, can be inferred from
the properties of some other models. First, let us examine in In a recent paper Hinrichsen has shown that for certain
more detail the model at the criticality, i.e., @ 0. Let us  models the singularity of the order parameter is determined
notice, that in this case it is only the sign of the expressiory singularity of the reactivation probability/ [11]. His ar-
w;W,w3 that determines the state of a site. Sincgis al- gument relies on the observation thatusually scales lin-
ways positive, it means that at the criticality this term is€arly with the control parametére., a parameter that mea-
irrelevant and the state of a site is determined by the produdures the distance from a critical poinThus, in models

W;W,, i.e., by the product of intrachain variables. The samevhere the density of active sitgsscales linearly wittw, the
singularity of p as a function of the control parameter is

solely a consequence of the singular behavioWbfln this
subsection we show that Hinrichsen’s results extends also to
the model examined in this paper.

Let us define the reactivation probability(r) as a prob-
ability that a given active site remains active after an update.
To computeW(r) we first calculate the probability density
P(2) that wyw,|ws|5=2z, wherew,,w,, andw; are inde-
pendent and uniformly distributed on-©.5,0.5). Thus, we
have to calculate

12 12 2
(12t~ 1o
Py(2)= dw, f _1/2dW2J0 gwé/s !

C. Reactivation probability

-2.5

logio(p)
-3

-3.5

4.5 1 1 1 L I 1
15 2 2.5 3 35 4 45 —12

logio(L)

X 8(Z— W W,oW3)dWs, 2
FIG. 5. The size dependence of the steady-state depsioy ~ ~

r=10"4(0), 10 %(+), and 0(0 ). The straight line has a slope Where (28)wi* ! is the probability density ofvz=|ws|®,

corresponding tg/v, =0.99(2) 6=2). wherews is uniformly distributed on {1/2,1/2). The calcu-
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lation of the integralg?) is elementary. Perfoming integra- variables on bonds connected to this site anid the corre-
tion overw;, w,, and then oveffv3 we obtain sponding site variable. Once initially selected,variables
remain unchanged during the evolution of this mo@siolv-
—4 (U2~ 145 ~ ~ ~ ing variables are only bond variabjegThe already dis-
Ps(2)= ?fo w3~ 7 In(4|2|/w3) O (w3 —4|2|)dws cussed model A corresponds to the casel on each sitg.
It is elementary to prove the following properties of the

4 1 S this model:
=5=1|2 | In4lz)+sin(2)+ (i) Similar to the model studied in the previous section the
model forr <0 generates with a finite rate sites, which re-
+i(4|2|)1/31] 3 main permanently nonactive. It means that fer0, the
s—1 ' model is in the absorbing phase.

(ii) Letr>0. Let us consider a site for whiah<4r. It is
where ©(x) is the unit step function. Having calculated obvious that for any choice of bond variables attached to it
Ps(z), the reactivation probabilityV(r) for positive r is  this site remains permanently active. Since in the thermody-
given as namic limit a finite fraction 4 of sites haw <4r, we obtain

that forr >0 the model is in the active phase.
As a conclusion, we obtain that=0 separates active and
+ i[zsl(r[ln(‘")_l] absorbing phases of this model. Let us also notice that for
s—1 r =0 the model is equivalent to the model(ie., v variables
are irrelevant which was shown to be critical at that point
(4”1/3]' (4) [9]. Moreover, the fraction @ of permanently active sites
decreases linearly to zero, which suggests that in this model
B=11[18].

Monte Carlo simulations of this model strongly suggest

N| =

W(r)=f(r P(z)dz=

1/2)s+2
2

A1)

+sr{In(2)+

1-s

From Eq.(4) one can see that/(r) is indeed singular at the

e N s ( _ fu
cr:mcal po'!"”"—‘f’ ang fqrs>|1\/_V(r)f rr] ) (gne can see thaF hthat indeed3=1 (see Fig. 2 Similarly to the ladder model,
the numerically found singularity of the oraer parameter With, . _ o ony the sign matters and variables are irrelevant.

the exponenj3=1/2 for s=2 corresponds to the same sin- 11,5 ot criticality, the behavior of this model is the same as
gularity of W(r). Thus, the density in the vicinity of the of the A model atr =0. Numerical simulations of the latter

critical pointr =0 should scale linearly with the reactivation -, show[9] that in this case=2 ands=1/2 as in the
probability W(r) and the singular behavior is only due to the ladder model.

singular behavior ofN(r) as a function of.

To check the above arguments we performed simulations
for s=4 and 1/2. Let us notice that fa&=1/2 the leading
term is notr Y butr In(4r). In this case3 should be unity but In conclusion, we examined a class of models with infi-
the logarithmic corrections might substantially affect thenitely many absorbing states. Critical expone@tg, and
scaling behavior. The results are presented in Fig. 2. As e3/v, take random-walk values. However, the exponghts
timated from the slope of our dat8=0.26(1) fors=4 and  and », are nonuniversal. This nonuniversality is related to
B=1.3(2) fors=1/2. Fors=4 the exponeng is very close the singular behavior of the reactivation probability(r).
to 1/4, which clearly confirms our arguments. Ber0.5 our  Thus, when as a control parameter of the model we choose
data are less accurate mainly due to very large relaxatiow/(r) rather tharr, the order parameter would have the uni-
time. Moreover, the logarithmic corrections might be responversal exponen=1. It would be interesting to examine
sible for the fact that the “true” scaling is not clearly seen. this model using, for example, field-theory meth$tig] and

Let us also notice that at the critical point=0 only the  to check whether some other universality classes among
sign matters and the behavior of the ladder model is indemodels with absorbing states are possible.

IV. CONCLUSIONS

pendent ofs. Thus, the remaining exponen&z, and the Note added in proofFors=1 ands=2 the critical expo-
ratio /v, must be the same as in the-2 case. nents of our model are the same as in a certain branching
annihilation random walk modésee, e.g., e-print cond-mat/
I. SINGLE-CHAIN MODEL WITH QUENCHED 000838). | thank Dr. G. Odor for drawing my attention to
DISORDER this relation.

In this section we examine a simple model that might help
us to understand the behavior of the ladder model studied in
the previous section. The model is defined on a single chain | thank Haye Hinrichsen for very stimulating correspon-
[see Fig. W)]. In addition to bond variables-1/2<w  dence and the Department of Mathematics of the Heriot-Watt
<1/2, there are on-site quenched variables0<1. A given  University (Edinburgh, Scotlandfor allocation of computer
site is defined as active f;w,v <r, wherew; andw, are  time.
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