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Criticality in a model with absorbing states
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We study a one-dimensional model that undergoes a transition between an active and an absorbing phase.
Monte Carlo simulations supported by some additional arguments prompted us to predict the exact location of
the critical point and critical exponents in this model. The exponentsd50.5 andz52 follows from random-
walk-type arguments. The exponentsb5n' are found to be nonuniversal and encoded in the singular part of
reactivation probability, as recently discussed by H. Hinrichsen~cond-mat/0008179!. A related model with
quenched randomness is also studied.
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I. INTRODUCTION

Recently, nonequilibrium phase transitions have been
tensively studied in a variety of models. Some attempts w
also made to classify possible types of phase transitions
universality classes similarly to equilibrium transitions@1,2#.
However, nonequilibrium transitions are much richer a
more puzzling than equilibrium ones and their understand
is still far from complete.

A class of nonequlibrium models for which such a categ
rization seems most feasible are models with absorb
states@3#. For example, models with unique absorbing sta
are expected to belong to the so-called directed-percola
~DP! universality@4#. Moreover, models with double~sym-
metric! absorbing states or with some conservation law
their dynamics belong to another universality class, the
called parity-conserving~PC! universality class@5#. Al-
though the above classification is best confirmed for o
dimensional models, it seems to apply to higher-dimensio
models as well@6#. Moreover, models with more than tw
@7# or even infinitely many absorbing states also fall into t
above universality classes.~Typically, models with infinitely
many absorbing states fall into DP universality class, ho
ever, certain symmetries@8,9# or conservation laws@10#
might change the criticality into PC.!

In the present paper we study certain one-dimensio
models with infinitely many absorbing states. In the first p
we study a model defined on a ladderlike lattice~ladder
model! and our Monte Carlo simulations show that th
model belongs to neither DP nor PC universality class
Critical exponentsd andz of this model appear to be rationa
numbers~contrary to the DP or PC criticality! and can be
obtained using simple random-walk-type arguments. Ho
ever, the exponentsb andn'(5b) appears to be nonuniver
sal. It turns out that their values are encoded in the sing
part of the reactivation probability as was recently postula
in the context of related models by Hinrichsen@11#.

Using a certain property of our ladder model, we c
easily calculate the upper bound on the existence of the
sorbing phase. Numerical simulations show that this bo
most likely gives the exact location of the critical point
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this model. In the final part of our paper we examine y
another but closely related model~single-chain model! for
which we can obtain also the lower bound of the absorb
phase. It turns out that both bounds are the same which
actly locates the transition point in this model. The mod
studied in this part of our paper contains some quenc
random variables and its critical behavior is similar to that
the model studied in the main part of our paper.

II. LADDER MODEL

A. Definition and basic properties

Our model is a certain variant of models recently stud
in some other contexts@9,12#. It is defined on a one-
dimensional ladderlike lattice@see Fig. 1~a!#. For each bond
between the nearest-neighboring sites we introduce a b
variable wP(20.5,0.5). Introducing real parametersr and
s.0, we call a given site active whenw1w2uw3us,r , where
w1 andw2 are intrachain bond variables connected with t
site andw3 is the interchain bond variable@see Fig. 1~a!#.
Otherwise, this site is called nonactive. The model is driv
by random sequential dynamics and when the active sit
selected, we assign anew, with uniform probability, thr
neighboring bond variables. Nonactive sites are not upda

First, let us notice that the model has a certain glo
up-down symmetry. Namely, reversing all bond variab
w→2w we do not change the status of any site, i.e., act
~nonactive! sites remains active~nonactive!. The same sym-

FIG. 1. ~a!The ladder model. The site (d) is active when
w1w2uw3us,r . An update of an active site replaces all three neig
boring bonds (s) with uniformly distributed random numbers from
the interval~20.5,0.5!. ~b! The single-chain model. The site is ac
tive whenw1w2v,r and its update replaces onlyw1 andw2.
©2001 The American Physical Society05-1
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metry appears in a closely related model, which is defined
a single chain and where activity of a site is determined
the product of two intrachain variables@9# ~in the following
we refer to this model as model A!. It was suggested that thi
symmetry is responsible for the fact that the model A b
longs to the PC universality class@9#. If so, the present
model should also belong to this universality class. In
present paper we show, however, that the critical behavio
this model is different. In our opinion, this result does n
completely abolish the claims about the importance of
up-down symmetry. Namely, as we will show below, t
change of the universality class in the present model co
from the very intricate mechanism: upon approaching
critical point the system might be regarded as compose
two weakly interacting critical subsystems. We expect tha
a generic case such a mechanism is absent and models o
kind, which are endowed with the up-down symmet
should belong to the PC universality class.

This situation bears some similarity to the equilibriu
statistical mechanics, where one expects that short-rang
teracting Ising models will generically belong to the Onsa
universality class. It is known, however, that when cert
additional interactions are included, the critical behavior
an Ising model, which is then equivalent to the eight-ver
model, deviates from the generic case@13#.

B. Monte Carlo simulations

To examine the properties of the above model we u
standard Monte Carlo simulations. First, let us describe
sults fors52. We calculated the steady-state density of
tive sitesr. The fact that the model is defined on a on
dimensional lattice enabled us to examine systems of la
size L ~up to 53105). Also the simulation timetMC was
rather large and typicallytMC;1052106 ~the unit of time is
defined as a single, on average, update per lattice site!. Our
simulations show that forr .0 the densityr remains posi-
tive but as soon asr becomes negative the system quick
reaches one of the absorbing states and thusr50. A simple
argument, similar to the one used for related models@9#,
shows that forr ,0 the model gradually generates site
which remain permanently nonactive. Indeed, letr ,0 and a
certain interchain bondw3 satisfies the condition

uw3u,A2r /~0.5!, ~1!

then for each site connected tow3 the absolute value of the
product w1w2w3

2 is smaller than 2r , which implies
w1w2w3

2.r , and these sites remain permanently nonact
Since upon updating an active site there is a finite probab
to satisfy~1!, there is a finite rate of creation of such sites~a
similar argument can be applied to an intrachain bon!.
Thus, in agreement with numerical simulations, forr ,0, the
system is in the absorbing phase. Combined with the c
putationally observed property that forr .0 the densityr
remains positive, it implies thatr 5r c50 is the transition
point for that model, which separates active and absorb
phases. In addition, our simulations, which are described
02610
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low, show thatr 50 is actually a critical point of this mode
and is accompanied by typical power-law characteristics

The first evidence of such a characteristic is shown in F
2, which presents the logarithmic plot ofr as a function ofr.
The linearity of the plot for approximately three decad
confirms the power-law behaviorr;r b. At the same time, it
confirms the location of the critical pointr c50. From the
least-squares analysis of these data we estimateb50.51(1).

Another quantity that we measured was the time evolut
of the densityr for r close to the critical pointr 5r c . One
expects that at criticalityr;t2d and deviations from the
power-law behavior appear off the critical point. The resu
are presented in Fig. 3. Forr 50 the clear power-law behav
ior is observed and from the slope of the data we estim
d50.50(1).

Other power-law characteristics are obtained from
finite-size analysis. In Fig. 4 we present the size depende
of the characteristic timet defined as an average tim
needed for the system to reach an absorbing state~with a
random initial configuration!. Again, the best linearity is

FIG. 2. The log-log plot of the density of active sitesr as a
function of r. The linear sizeL in this simulation varied fromL
553104 to 23106. The solid lines~least-squares fit! have slopes
corresponding tob50.26(1) ~for s54), 0.51~1! ~for s52), 1.3~2!
~for s50.5), and 0.99~2! for the single-chain model.

FIG. 3. The time evolution of the densityr for ~from top to
bottom! r 51024,1026,0,210210,21028,21026, and21024. The
simulations were made fors52 andL5105 and we checked tha
for the examined time scale our data are basically size independ
These data limitr c to the range210210,r c,1026. Even tighter
bounds follow from Fig. 4.
5-2
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seen for r 50 and in this case we obtaint;Lz with z
52.01(1). Let usnotice that this figure limits the allowe
values ofr c to the very narrow range210212,r c,1028.

Finally, Fig. 5 presents the steady-state densityr as a
function of sizeL. For r 51024 and 1026, r converges to the
positive value but forr 50 it decays asr;L2b/n' with the
exponentb/n'50.99(1).

For comparison with our model, we quote the values
these exponents for the one-dimensional DP~Ref. @14#! and
PC ~Ref. @15#! universality classes:b50.264 86~DP!,
0.92~PC!; d50.159 464~DP!, 0.286~PC!; z51.580 745~DP!,
1.74~PC! and n'51.096 854~DP!, 1.83~PC!. Thus, our re-
sults clearly place the model into a new universality clas

However, the obtained values of the exponents are
entirely unexpected. In the following we argue that at le
the values ofd,z, and of the ratiob/n' can be inferred from
the properties of some other models. First, let us examin
more detail the model at the criticality, i.e., atr 50. Let us
notice, that in this case it is only the sign of the express
w1w2w3

2 that determines the state of a site. Sincew3
2 is al-

ways positive, it means that at the criticality this term
irrelevant and the state of a site is determined by the prod
w1w2, i.e., by the product of intrachain variables. The sa

FIG. 4. The size dependence of the characteristic timet for
~from top to bottom!: r 51026,1028,0,210212,21028,21026, and
21024. The straight line has a slope corresponding toz52.01.
Each point is an average of 100 independent runs ands52.

FIG. 5. The size dependence of the steady-state densityr for
r 51024(h), 1026(1), and 0(L). The straight line has a slop
corresponding tob/n'50.99(2) (s52).
02610
f

ot
t

in

n

ct
e

condition appears in model A and thus the present mode
the criticality is equivalent to two noninteracting models
Numerical evidence was already presented@9# that at r 50
model A is at the end point of its critical phase, which in t
A model appears in the range 0,r ,r c;0.027. This critical
phase is described by simple, random-walk related ex
nents:d50.5,z52, andb/n'51 @16#. On the basis of the
above relation and in agreement with our simulations
obtain that these random-walk exponents are the critical
ponents in our model. Let us emphasize that the criti
phase in PC models exists in a certain range of a con
parameter@17# and its~random-walk! criticality is described
by a different set of exponents than the critical point of su
models. In our model, there is only an isolated critical poi
which is described by the random-walk exponents.

The above relation with model A does not explain t
value of the exponentb, which most likely equals 0.5. This
is because the relation with model A holds only atr 50
while the exponentb describes the off-critical singularity
One can argue, however, that whenr is positive but small,
then the interaction between these two A models is a
small. Let us recall now, that for suchr, model A is critical
and thus the present model is equivalent to two weakly
teracting critical A models. It is interesting to observe th
such an interaction is sufficient to destroy the criticality a
to keep the system in the active phase withr.0. Qualita-
tively, we explain the large~comparing to model A! activity
as follows: In models with absorbing states a nonactive
main can be reactivated only through its boundaries. Ho
ever, the already mentioned weak interaction can reactiv
even the interior of such domains, which dramatically
creases the activity of the system.

C. Reactivation probability

In a recent paper Hinrichsen has shown that for cert
models the singularity of the order parameter is determi
by singularity of the reactivation probabilityW @11#. His ar-
gument relies on the observation thatW usually scales lin-
early with the control parameter~i.e., a parameter that mea
sures the distance from a critical point!. Thus, in models
where the density of active sitesr scales linearly withW, the
singularity of r as a function of the control parameter
solely a consequence of the singular behavior ofW. In this
subsection we show that Hinrichsen’s results extends als
the model examined in this paper.

Let us define the reactivation probabilityW(r ) as a prob-
ability that a given active site remains active after an upda
To computeW(r ) we first calculate the probability densit
Ps(z) that w1w2uw3us5z, wherew1 ,w2, and w3 are inde-
pendent and uniformly distributed on (20.5,0.5). Thus, we
have to calculate

Ps~z!5E
21/2

1/2

dw1E
21/2

1/2

dw2E
0

(1/2)s2

s
w̃3

1/s21

3d~z2w1w2w̃3!dw̃3 , ~2!

where (2/s)w̃3
1/s21 is the probability density ofw̃35uw3us,

wherew3 is uniformly distributed on (21/2,1/2). The calcu-
5-3
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ADAM LIPOWSKI PHYSICAL REVIEW E 63 026105
lation of the integrals~2! is elementary. Perfoming integra
tion overw1 , w2, and then overw̃3 we obtain

Ps~z!5
24

s E
0

(1/2)s

w̃3
1/s22 ln~4uzu/w̃3!Q~w̃324uzu!dw̃3

5
4

s21 H 2s21F ln~4uzu!1s ln~2!1
s

12sG
1

s

s21
~4uzu!1/s21J , ~3!

where Q(x) is the unit step function. Having calculate
Ps(z), the reactivation probabilityW(r ) for positive r is
given as

W~r !5E
(1/2)s12

r

Ps~z!dz5
1

2
1

4

s21 H 2s21S r @ ln~4r !21#

1srF ln~2!1
1

12sG D1
s2

4~s21!
~4r !1/sJ . ~4!

From Eq.~4! one can see thatW(r ) is indeed singular at the
critical point r 50 and fors.1W(r );r 1/s. One can see tha
the numerically found singularity of the order parameter w
the exponentb51/2 for s52 corresponds to the same si
gularity of W(r ). Thus, the densityr in the vicinity of the
critical point r 50 should scale linearly with the reactivatio
probabilityW(r ) and the singular behavior is only due to th
singular behavior ofW(r ) as a function ofr.

To check the above arguments we performed simulati
for s54 and 1/2. Let us notice that fors51/2 the leading
term is notr 1/s but r ln(4r). In this caseb should be unity but
the logarithmic corrections might substantially affect t
scaling behavior. The results are presented in Fig. 2. As
timated from the slope of our data,b50.26(1) fors54 and
b51.3(2) fors51/2. Fors54 the exponentb is very close
to 1/4, which clearly confirms our arguments. Fors50.5 our
data are less accurate mainly due to very large relaxa
time. Moreover, the logarithmic corrections might be resp
sible for the fact that the ‘‘true’’ scaling is not clearly see

Let us also notice that at the critical pointr 50 only the
sign matters and the behavior of the ladder model is in
pendent ofs. Thus, the remaining exponentsd,z, and the
ratio b/n' must be the same as in thes52 case.

III. SINGLE-CHAIN MODEL WITH QUENCHED
DISORDER

In this section we examine a simple model that might h
us to understand the behavior of the ladder model studie
the previous section. The model is defined on a single ch
@see Fig. 1~b!#. In addition to bond variables21/2,w
,1/2, there are on-site quenched variables 0,v,1. A given
site is defined as active ifw1w2v,r , wherew1 andw2 are
02610
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variables on bonds connected to this site andv is the corre-
sponding site variable. Once initially selected,v variables
remain unchanged during the evolution of this model~evolv-
ing variables are only bond variables!. ~The already dis-
cussed model A corresponds to the casev51 on each site.!

It is elementary to prove the following properties of th
this model:

~i! Similar to the model studied in the previous section t
model for r ,0 generates with a finite rate sites, which r
main permanently nonactive. It means that forr ,0, the
model is in the absorbing phase.

~ii ! Let r .0. Let us consider a site for whichv,4r . It is
obvious that for any choice of bond variables attached t
this site remains permanently active. Since in the thermo
namic limit a finite fraction 4r of sites hasv,4r , we obtain
that for r .0 the model is in the active phase.

As a conclusion, we obtain thatr 50 separates active an
absorbing phases of this model. Let us also notice that
r 50 the model is equivalent to the model A~i.e.,v variables
are irrelevant!, which was shown to be critical at that poin
@9#. Moreover, the fraction 4r of permanently active sites
decreases linearly to zero, which suggests that in this mo
b51 @18#.

Monte Carlo simulations of this model strongly sugge
that indeedb51 ~see Fig. 2!. Similarly to the ladder model
at r 50, only the sign matters andv variables are irrelevant
Thus, at criticality, the behavior of this model is the same
of the A model atr 50. Numerical simulations of the latte
model show@9# that in this casez52 andd51/2 as in the
ladder model.

IV. CONCLUSIONS

In conclusion, we examined a class of models with in
nitely many absorbing states. Critical exponentsd,z, and
b/n' take random-walk values. However, the exponentsb
and n' are nonuniversal. This nonuniversality is related
the singular behavior of the reactivation probabilityW(r ).
Thus, when as a control parameter of the model we cho
W(r ) rather thanr, the order parameter would have the un
versal exponentb51. It would be interesting to examin
this model using, for example, field-theory methods@19# and
to check whether some other universality classes am
models with absorbing states are possible.

Note added in proof. For s51 ands52 the critical expo-
nents of our model are the same as in a certain branc
annihilation random walk model~see, e.g., e-print cond-ma
0008381!. I thank Dr. G. Odor for drawing my attention t
this relation.
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